
Overview and History of
OpenMCL

● Commercial MCL was first released in 1987;
ran on 1MB MacPlus (68K), rich IDE, GUI;
fast compilation

● Acquired by Apple in 1989; transferred to
Digitool in 1994

● MCL ported to PPC Macintosh in ~1995



History of OpenMCL

● Erann Gat of JPL wanted to develop a small-
footprint Lisp for use in PPC embedded
systems (rovers/robots, flight systems). After
exploring other alternatives, MCL source
license was acquired and MCL (sans
GUI/IDE) was ported to VxWorks and
LinuxPPC (which used the same ABI) in
1998.



OpenMCL at JPL

● Objections to use of Lisp within NASA/JPL
were perhaps based more on cultural than
technical considerations (see
http://flownet.com/gat/jpl-lisp.html).
The port was discussed at AI conferences
and drew some interest, but JPL’s license did
not allow redistribution. This work was never
used in production systems.



OpenMCL at Sandia

● In 2001, the Advanced Information Systems
Laboratory at Sandia National Labs, having
heard of the JPL port, expressed interest in
using it in their research. I was able to
persuade Digitool to open-source the work
that had been done at JPL. A small
consulting company formed by original MCL
developers hosts the open-source project at
http://openmcl.clozure.com/.



OpenMCL History: 2001-2005

● Ported to OSX/Darwin (PPC).
● Interface translation system (based on GCC
frontend.)

● Most of the (quasi-standard) MetaObject
Protocol (MOP)

● Native (preemptively-scheduled) threads
● “Demo” Cocoa-based GUI/IDE
● Ported to PPC64



Users

● Currently about 180 mailing list subscribers
● Server logs suggest ~5 downloads a day
● Most users seem to be using OpenMCL
under OSX/Darwin as opposed to LinuxPPC
(~9:1). Linux version has had problems with
NPTL and TLS, to be fixed in 0.14.4.

● A guess would be around 200-300 active
users, but very hard to estimate

● -Probably- many more individual users than
institutional ones.



OpenMCL History 2005-

● Apple’s x86 announcement
● Handling of large objects in GC/EGC,
handling of very large address spaces
(especially on 64-bit platforms.)

● Better (e.g., “some”) lifetime analysis in the
compiler (reduce floating-point consing.)

● Metering/performance tools
● Other funded work



OpenMCL technology: GC

● OpenMCL’s GC is “precise” - the GC always
knows whether a “root’ (stack location or
machine register) contains a pointer to a lisp
object or an immediate value. This enables it
to reliably move objects (to improve locality,
improve paging behavior, etc.)



OpenMCL GC: precise vs
conservative

● Precise GC (as opposed to “conservative
GC”) depends on cooperation from the
compiler and runtime system and strict
adherence to register-usage conventions.

● “compiling to C” generally mandates
conservative GC.

● Register usage conventions are easier to
enforce on machines that have registers.



OpenMCL GC and threads

● For precise GC, register-usage conventions
have to be followed at any time that a GC
could occur.

● In general, native threads mean that a GC
could occur at any time (because of activity
in some other thread.) See previous bullet.

● Current GC must stop other threads.



OpenMCL GC and threads,
continued.

● Newly allocated heap memory is zeroed
(often by the OS.) Newly allocated stack
memory may contain random bits; stack
allocation has to be done carefully in some
cases.

● Some operations (consing) aren’t truly
atomic, but we pretend that they are: the
runtime system can recognize these cases
and ensure that an interrupted thread is in a
consistent state when the GC runs.



GC Implementation Details

● Single-space GC, compacts in place
● The (approximate) age of an object can be
determined by its relative position in the
heap.

● Old objects (generally) don't move; young
ones generally do.

● “Ephemeral” GC depends on ability to detect
the (rare?) case when old objects are
destructively modified to point to new ones



More OpenMCL GC Details

● Current releases use MMU write-protection
to implement the “write barrier” (invariant
mentioned on previous slide.)

● Next release will use a software write barrier,
and the runtime system understands how to
ensure atomicity and handle contention.

● Software write-barrier offers much better
granularity (8/16 bytes vs 4K bytes)



GC and Threads

● Threads allocate “segments” (~32KB),
maintain current pointer in segment and low
limit of segment in registers.

● Consing (allocating objects of known and
small size) happens inline and takes about 6
instructions (next slide).

● If thread X is interrupted while consing, the
interrupt-handling code completes or backs
out of the instruction sequence.



Pseudocode for (SETQ X (CONS
Y Z))

● (allocptr <- (- allocptr (- cons-size cons-tag)))
● (trap-if-less-than allocptr allocbase)
● (rplaca allocptr y)
● (rplacd allocptr z)
● (x <- allocptr)
● (allocptr <- clear-tag(allocptr))



Relocating GC implications

● Lisp object addresses can (generally) change
at any point in time.

● Hash tables that hash objects by identity
(address) may need to rehash when
addresses change due to GC activity

● Some hash table code needs to briefly
disable GC.



OpenMCL: native threads vs
cooperative threads

● If N is the number of processors in a system,
a program that uses more than N threads
can't (generally) run faster than one that uses
N or fewer (though multithreaded programs
may be simpler to develop and maintain.)
I.E, there is -some- context-switch and
synchronization overhead.



OpenMCL threads: OS
scheduling

● The OS ultimately decides how processor
resources are allocated to threads and
processes. Switching contexts between two
threads in the same process (address space)
is generally cheaper than switching between
processes (MMU overhead).

● Applications do not (generally) have fine-
grained control over OS context switch, and
have little/no control over CPU allocation.



OpenMCL: cooperative threads

● It's possible to switch execution contexts
(stacks/registers) in user space (this is often
called “co-routining”); user-space context
switching is often faster than OS context
switching.

● A timer interrupt can invoke an application-
level scheduler function, creating the illusion
of preemptive scheduling (e.g, threads don't
have to worry about exceeding time quanta.)



OpenMCL: more cooperative
threads

● Cooperatively scheduled threads can't
(casually) block indefinitely on a system call,
since this generally prevents the application-
level scheduler from running.

● The application-level scheduler generally has
to poll for external events (I/O completion,
synchronization events) in order to determine
whether or not a thread is runnable. (This
constitutes busy-waiting.)



OpenMCL: cooperative thread
issues

● Latency (the time between the occurrence of
an external event and the application-level
scheduler noticing that occurrence and
scheduling a thread that's been waiting on
the event) can be very high.

● The trick of multiplexing multiple execution
contexts within a single OS-level thread
doesn't scale well to MP systems (where
multiple OS threads may run concurrently.)



OpenMCL: cooperative threads

● It's relatively simple to inhibit scheduling of
user-space threads (WITHOUT-
INTERRUPTS/WITHOUT-SCHEDULING),
and these idioms are often used to guard
critical sections (especially when one is too
lazy to use locking primitives.)



OpenMCL: native threads

● OpenMCL implementations have used native
(OS-level) threads since 2003.

● User-level API is very similar to cooperative
thread API, except:
– PROCESS-WAIT is deprecated

– WITHOUT-INTERRUPTS controls the

interruptibility of current thread, doesn't affect

scheduling

– Use of locks/semaphores strongly advocated



OpenMCL: locks & semaphores

● Lisp semaphores are a very thin wrapper
around OS-level semaphores.

● OS-level locks are often too heavyweight to
be usable (on OSX, obtaining a lock involves
2 or 3 system calls, even when there is no
contention.)

● Lisp locks use atomic memory access
primitives to determine contention, only
involve the OS when contention exists
(Futexes)



Threads and special variables

● Shallow binding: save old value on a stack,
set symbol to new value, pop old value on
exit from binding construct. Access and
update are unit-cost.

● Can't work when multiple threads are
involved (value cell is a shared resource.)

● OpenMCL maintains per-thread local
bindings; access/update constant cost (about
8 instructions.)



OpenMCL: user-level benefits of
native threads

● N can be greater than 1 (threads can execute
concurrently on MP systems)

● Greater interoperability with foreign code; lisp
threads can “casually” block waiting for I/O or
other external events

● Reduced latency associated with waiting for
external events.

● Less polling/busy-waiting, better overall CPU
utilization



OpenMCL: possible drawbacks
of native threads

● Lack of very fine-grained control over
scheduling.

● Threads and synchronization objects are
“heavier” (involve the OS.)

● Code originally written to run under traditional
scheduling models may require careful
review. (Use of WITHOUT-INTERRUPTS is
often suspect; shorthand for WITH-MORE-
APROPRIATE-LOCKING.)



OpenMCL Compiler

● OpenMCL's compiler tries to generate “good”
code quickly. It's often successful, but there
are situations where it would need to think
harder than it does (lifetime analysis, mostly)
in order to generate “good” code.

● In general, floating-point objects have to be
heap-allocated. It's worth trying to avoid the
general case.



OpenMCL compiler: lifetimes of
floats

(defun fsum1 (n)
(let* ((sum 0.0d0))
(dotimes (i n sum)
(incf sum i))))

;;; (fsum1 1000) allocates 1000 double-floats
(defun fsum2 (n)
(let* ((sum 0))
(dotimes (i n (coerce sum 'double-float))
(incf sum i))))

;;; (fsum2 1000) allocates 1 double-float



OpenMCL compiler: float-
consing

● The examples on the preceding page are
contrived, but illustrate the general case that
“not all floating-point results need to be
represented as lisp objects of type DOUBLE-
FLOAT”. Keeping such results in FP
registers or unboxed stack locations would
save significant consing; when the number of
unnecessary FP-consing operations gets into
the millions or billions, the negative impact is
significant.



OpenMCL compiler: other
performance issues

● As a sweeping generalization, other
performance issues that may be encountered
are less likely to be endemic (and more likely
to be a case of “no one's ever complained”.)

● It's hard to make (or trust) sweeping
generalizations about the performance of any
large system.



Other opportunities for
optimization

● Leaf functions aren't recognized: about 7
instructions to build a stack frame, about 4 to
tear it down. Lisp programs are said to
spend a high percentage of their execution
time near the leaves of the call tree.

● Many functions that aren't (purely) leaf
functions have “leaf” execution paths through
a toplevel IF/COND/CASE etc.



Compiler summary

● The fact that the OpenMCL compiler
compiles quickly is an attractive feature to
many users

● It can afford to be a little slower
● Floating-point issues don't seem to impact
ACL2 much (is this true ?) but other issues
may.

● It can get better and still be pretty quick



Environment & Debugging

● My excuse: “this was supposed to go in
embedded systems!”. Debugging
environment is spartan and what's there is
often poorly documented. (Terse online help
via :?)

● Everything (practically everything) is
compiled; there's no useful STEP macro.

● Some other environments (SLIME, the
Cocoa IDE) provide friendlier debugging
facilities.



Performance tools

● Metering based on 100Hz clock interrupts
often yields unsatisfactory results: the
interrupts aren't guaranteed to be delivered
reliably, they may be delivered to an arbitrary
(and possibly uninteresting) thread, and the
resolution is at least a little low.

● Apple's CHUD performance tools use OS
kernel extensions to provide high-resolution
timer interrupts without affecting scheduler



Performance Tools

● User-level CHUD tools (e.g., Shark) don't
understand how to identify compiled Lisp
functions, but (with some limitations) can be
persuaded to do so.

● I may need help (or time) to make them more
usable with ACL2; I've been able to identify
some things (heavy use of symbol plist
operators, frequent calls to EQUAL) that may
not have been apparent otherwise.



Shark profiling (when it works)



Build process

● Show of hands: has anyone in audience built
OpenMCL ?

● Lisp implemented as a kernel (written in C
and PPC assembler) and a heap image. GC,
exception handling code in C; C code only
runs when lisp code can't.

● Build process is circular: need a heap image
to build a heap image.

● Recompiling all lisp sources and rebuilding
an image takes a few minutes.



Development process

● Two CVS trees, “main” and “bleeding-edge”.
● Bleeding-edge tree often contains
experimental/new features, may not build
with released image. (Usually, new images
are available in /testing directory on
openmcl.clozure.com.)

● Releases have not been as regular as one
might like; about 10 months between 0.14.2
and 0.14.3, maybe 5 months for 0.14.4



Development process,
continued.

● Bugs are often fixed in development tree,
fixes don't always make it into patch
releases. (Often, there are technical reasons
for this, involving ABI changes, but not
always.)

● Need to try to commit to regular release
schedule (2 months ? 3 months ?)

● Releases take time to put together.



Documentation and Resources

● Online documentation is probably fairly
accurate, but not extensive.

● Mailing list is medium-low volume, usually
very good signal-to-noise ratio.

● Clozure (the consulting company) is starting
to offer commercial support options (details
TBD.)

● Clozure has a contract to provide support for
ACL2 (not sure how broad; ask Warren.)



Development Model

● It -is- an open-source project; other people
do contribute, and hopefully more people will
be encouraged to do so.

● “internals” document on website is about 5
years old (predates native threads); maybe
60% accurate.

● Clozure is seeking funding for the Intel port
and other work.


